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Abstract. We analyse earlier obtained numerical results for the knot complexity and the
topological persistence length (i.e. the minimal number of steps on the lattice needed for the
knot to be formed) with help of well known path integrals for semiflexible chains. In addition,
we provide an estimate for the number of different knots having knot diagrams with exactly
crossings. Analytical results obtained are in satisfactory agreement with the available numerical
data.

1. Introduction

Recently, numerical results have become available for the average writhe and knot
complexity [1]. Independently, the minimal number of steps on a three-dimensiB3al [
cubic lattice beyond which the first non-trivial knot can be formed was estimated [2, 3]
following earlier crude estimates by Dellwk [4]. Knot complexity (to be determined
below) plays an important role because the number of distinct knots is directly related to
the knot complexity [5, 6].

The presence of knots is expected to play an important role in the kinetics of the
coil-globule transition [7,8] as well as in the rheological properties of polymer solutions
[9-11].

The existing description of knots in terms of knot polynomials [12, 13] does not allow a
direct comparison with the available experimental (humerical) data. Recently, an alternative
approach to knotted polymers was proposed [14]. It is based on the differential-geometric
properties of knotted circular polymers and allows us, in principle, to obtain analytically the
observed polymer lengttiv) dependences of the physically interesting quantities. Using this
differential-geometric approach thé-dependence of the average writhh@/r|) for circular
polymers was obtained and is found to behave.a$ in agreement with the existing
numerical and analytical (non-path-integral) results. The ability to obtain meaningful
analytical information about knotted polymers is based on two largely independent factors.
First, to obtain the analytical results, we need to have the explicit analytic expressions
for physically observed quantities. Second, we have to have the polymer path integrals
(see e.g. [15] for the traditionally used models) which will enable us to calculate (or to
estimate) these observables. These requirements are necessary but may not be sufficient.
For example, we may have an analytic expression for the knot complexity (see below) which
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is very difficult to calculate (or even to estimate) analytically. At the same time, we may
have formal expressions for the path integrals which we may not be able to use (because of
technical and other reasons as will be explained below). For these reasons, some additional
information is needed. It is provided by independent mathematical results, e.g. Milnor's
inequality [16] for knotted rings, discussed in section 2, and knot energy [17], discussed in
section 3. Using Milnor’'s inequality combined with the existing path integral methods for
the semiflexible polymers, we obtain in section 2 an analytic estimate for the topological
persistence length- (i.e. the minimal number of steps on the lattice for a non-trivial knot
to be formed).

In section 3 we use known connection(s) between the knot complgxityand the knot
energyE[y] [17] in order to estimate the knot complexity as a function of polymer length
N. As a by-product, we also estimate the number of different knots of given complexity
and provide an independent check of Milnor’s inequality (section 2) based on the known
results for the energy for the unknot. Results obtained for the average complexily
provide the upper and lower bounds for this quantity which (within the approximations
made) is estimated to behave Ms< (c[y]) < N1® while the numerical data [1] produce
(c[y]) o« N* with o, >~ 1.12240.005. In section 4 we explain why the exponent 1.5 is too
high and why the ‘true’ upper bound exponent shoulcbkiow 1.4. To improve the above
estimate, more sophisticated path integrals are required. They are also discussed in section 4
where, in addition, some practical applications of the obtained results are proposed.

2. Topological persistence length from Milnor’s inequality

In our previous work [18] we have introduced a notion of the topological persistence length
which we would now like to review briefly. To generate knots on a regular lattice several
requirements should be met. First, there should be a routine which generates closed
self-avoiding (SAW) loops. Second, there should be another routine which allows us
to distinguish between the different topologies. Third, in order to achieve an adequate
statistical accuracy the number of closed polymer configurations of each topological type
should be large to account for all possibilities of putting a knot of a given type on the lattice.
Michels and Wiegel [19] have obeyed the above requirements, except the requirement of
self-avoidance. More recently, Windwer [20] has taken the above restriction into account
and incorporated the self-avoidance constraint into his computer routine. The results of
his simulations are in complete accord with Milnor’'s theorem [16] as we shall demonstrate
shortly. The latest results of Diao [2, 3] differ somewhat from that of Windwer but can also
be explained using Milnor’s inequality.

The numberQ‘}V of closed unknotted SAW configurations of walks @fsteps in three
dimensions obeys the following equatioiN — oo) (obtained by Des Cloizeaux, see e.g.
[18]):

0% = Co(uOHV N (2.1)

where C° and x° are some non-universal (lattice-dependent) constants, vaigl the

correlation length exponent (for SAW ~ g in three dimensions). Windwer [20] had

used the analytical form of (2.1) to fit his numerical data. Specifically, if one assumes that
for SAW knots

Oy =C()"N® (2.2)
then one can construct the rajg = Q?V/QN given by

ey = CA"N® (2.3)
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which is the probability for a closed walk @¥ steps to remain unknotted. Windwer found

a = 0, i = 0.9949 andC = 1.2325. The result (2.3) is in complete agreement with
an independent theoretical result by Sumners and Whittington [21]. Equation (2.3) can be
conveniently rewritten agx = 0)

N/lp
Ev=C (é) (2.4)

where the topological persistence lengthis defined to be the leagt for which a knot
may occur. Therefore

Ev=1=Cp" (2.5)

which follows from (2.3). Foriz andC given above one obtairis ~ 41. In our previous
work [18] we obtained analytically

C=q1/2exp[—%é} (2.6)

whereq is the number of states of thestate two-dimensional Potts model addis the
central charge. We provided arguments which sejeet 4 (and, henceC = 1) which
produce forC the resultC = 1.184 7696, which differs from that obtained by Windwer
by about 4%. The lattice-specific topological persistence lehgthas left undetermined.
In this paper, based on Milnor’s theorem [16] we shall demonstratelthat40, which is
in excellent agreement with Windwer’s results. The above result, if properly interpreted,
is also in agreement with the results of Diao [2, 3] as will be explained at the end of this
section.

To begin our analytical derivation df, the following Schwarz inequality [22], valid
for any closed curve, is very helpful;

N 2 N
(27)% < (/ dr |k(r)|> < N/ dr k%(7) (2.7)
0 0

wherek(t) is the local curvature of the curve of length If we think of the curve as being
made of a real physical material, e.g. a polymer, then using polymer terminology we have
to perform the statistical average of (2.7) with the help of the path integral for semiflexible
chains (see e.g. [15, 23]). The statistical average in terms of such a path integral can

be defined as

N

(=N Dln(] [[8n2(®) ~1)... exp{ _r f dr kz(r)} (2.8)
n(0)=n(N) T 2 0

where the normalization constaif is chosen in such a way thét) = 1 and the constant

y is related to the rigidity of the polymer’s backbone. In the fully flexible lingit~> 0, the

polymer chain behaves as Gaussian [23]. It is known [15, 24] that in this limit the polymer

Kuhn’s step length = 2y. We can associate in this limit the lengttwith the unit step

length of the random walk on the regular cubic lattice [23].

Such identification should be done with some caution, however. Indeed, we can make it
only if the discrete analogue of the path integral (2.8) is known and is well defined. As the
results of [23] indicate, the lattice-dependent factors kK2, etc are likely to occur when
the identifications between the discrete and the continuum formulations are made (see e.g.
p 2475 of [23]). These factors are responsible for some differences in the final resujts for
From the experimental point of view, the measured combinatioN 2= [N = (R?) does
not allow us to separateandN. Some independent measurementisfrequired [25] which
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inevitably introduces some errors. Hence, both the discrete and the continuum formulations
can provide only the upper and lower bounds fforas will be further explained below.
Combining (2.7) and (2.8) we obtain

2
(27)% < <(/ON dr |k(t)|> > < N</ON dr kz(r)>. (2.9)

This inequality should be valid for any closed polymer configuration. At the same time,
according to Milnor [16], in case the closed curve is a nontrivial knot (of any kind) the
following inequality should hold:

N
/ dr |k(t)| > 4. (2.10)
0

Combining inequalities (2.9) and (2.10) we obtain the following result for the knotted curves:

N 2 N
(4r)? < <<f de |k(t)|> > < N</ de kz(f)>. (2.11)
0 0

The saddle point treatment of the path integral (2.8) was performed by Langer and Singer
[26, 27] who considered a three-dimensional variational problem for the functional of the
following type:

N
fLs[y]z/ ds (k%(s) + m?) (2.12)
0

where d is the length element along the curyeand the Lagrange multiplien? accounts

for the fact that the length of the curve is fixed. As was shown by Griffiths [28] and later
by Bryant and Giriffiths [29] (and even more recently in [30]), the variational problem given
by (2.12) produces trajectories which are identical to those obtained from the functional

N
Frclyl = %/0 ds k2(s) (2.13)

where the curves are constrained to lie on some surfaces of constant curvature (the numerical
value of the curvature constant is directly relatednufo[30]). Langer and Singer [27] have
shown that for the problem defined by (2.12), ‘There exist a countable infinity of (similarity
classes of) closed non-planar elastic curve®m All such elasticae are embedded and lie
on embedded tori of revolution. Infinitely many of these are knotted and the knot types
which thus occur are precisely tlie, n)-tours knots satisfying: > 2n. The integersn, n
determine the elasticae uniquely (up to similarity)’.

To actually perform the averaging, several steps are required. First, we would like to
point out that for the semiflexible polymers it is the dimensionless combinatjgnwhich
actually determines how stiff the polymer chain is. In terms of Kuhn's lerigie have

w="1= % In view of this, the action functional in (2.8) can be rewritten as

Y e L [Mae 2
S=§/0 Tk(T)ZE/O t k() (2.14)

where in arriving at the last equality we have taken into account that in the case of natural
parametrizationp® = 1, we havek?(r) = (f’j—';)2 andn = % wherer(t) is the spatial
position of the polymer segment at contour positiofil5]. Combining (2.8), (2.11) and

(2.14) we obtain
N 1 a
N</ drk2(1)>: </ dr k2(1)> =—4 InI(w) (2.15)
0 0

dw~1
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where

I(w) =

S

1
Din()] [ [n?(1) — D) exp{ - %/0 de kz(t)}

(N)=n(0)

M2

2n + 1) expi—w(n + Dn}. (2.16)

Il
o

n

In arriving at the last line we have used the results of our previous work [14]. As in this
reference, we would like to replace the summation by integration (which corresponds to the
semiclassical level of approximation). This then produces

I(w) ~ f h dx 2x exp(—wx?). (2.17)
0

Combining (2.15) and (2.17) produces (within the approximations made)

</1dt k2(1)> = 4. (2.18)
0

Combining this result with the inequality (2.11) we obtain

(47)? < 4o (2.1%)
or

(27)° < w. (2.1%)
Since(2r)? ~ 40 and sincew is the effective number of steps on the lattice we obtain

w > 40 (2.20)

which is in excellent agreement with the numerical results of Windwer [20], see e.g. (2.5).
At the same time, if we were to choose the rescaled lemith> N+/2 (or, equivalently
the rescaled Kuhn's length,— /+/2) we would obtain instead

w > 28 (2.21)

which is in good agreement with Diao’s rigorous calculation [2, 3] that 24 for knots

on the cubic lattice. Since the factors liké2 reflect the symmetry of the cubic lattice

and naturally emerge in the discretized models for the semiflexible polymers [23, 31], the
results (2.20) and (2.21) represent the upper and lower bound estimatesofothe cubic

lattice. Evidently, if we were to choose a different lattice, the resultsifomight be
somewhat different. If we were to ask a question: ‘What is the minimal number of edges
(in continuum) required to represent a given knot?’ [32], the result would be a topological
invariant. Unfortunately, it cannot be used for most real polymers since its existence requires
a fixednumber of bends for the otherwise completely rigid polymer segments (edges) which,
in addition, should form a closed polygon in three-dimensional space. The angles between
the edges in such a polygon are quite arbitrary. Both the fixed number of bends and the
arbitrariness of angles between the segments are not characteristic for real polymers. For
polymers the number of bends is a random variable and the angles between the bends are
not arbitrary. The path integral analysis of theproblem is just a reflection of these facts.
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3. Entanglement complexity and knot energy

Recently, we have performed a path integral calculation of the average whthg for
closed SAW [14]. The writhe is an interesting geometric (non-topological) measure of the
entanglement complexity of closed SAW [12]. To understand why this is so, we would
like to remind the reader that our information about any given knot is mainly based on the
analysis of its projection onto some two-dimensional plane. As a result of such projection,
we obtain a four-valent graph for which we have to assign information at each vertex
(otherwise the same graph will correspond to more than one knot). The rule consists in
assigning under- (over-) crossings at each vertex. If, in addition, we select an orientation
along the contour path, then for each over-crossing we can assign thetsigaccording
to the usual conventions. If we move along the contour, the algebraic sum of these signed
crossing numbers defines the writhe of the closed curve [12,13]. Since the writhe is not a
topological invariant, by repeating this procedure for another plane whose normal is oriented
in a direction different from the original normal direction, we would obtain a different value
for the writhe. Repeating this procedure many times we can thus define the angular averaged
writhe of a knot or oriented link.

The above statements can now be made more precise by using the analytical expression
for the writhe [14]:

, (r(7) x (1) ,
Wrly] = / d‘L’/ dr D) — ()P < (r(r) —r(t)) (3.1)

wherer(t) = ‘j—’;. Such a defined writhe has a clear geometrical meaningr(zetbe an
embedding of a circles into R3. We can construct a unit vector
, r(r) —r(t)
n(r, )= ———— 3.2

lr(t) — ()] (3:2)
which provides a Gauss maj x S'-(diagonal)— S2. The degree of such a defined Gauss
map (i.e. the winding number) is writhe [12,17]. One can consider the absolute value
|Wr[y]| instead, and its angular averag®r[y]|) as described above. Calculations of this
guantity were performed in [14] with the result

(IWrlyll) o< VN (3.3)

which is in excellent agreement with the existing numerical data [1]. At the same time,

the same authors also enumerated the average entanglement comgleikitshich differs

from the writhe by the rule by which the crossings in the projection plane are calculated.
In the case of entanglement complexity, the signs of crossings are disregarded ¢ that

is a non-negative number by construction [12]. The averaged entanglement complexity is
found numerically to scale as

{c[y]) o« N* (3.4)

with «. = 1.122+ 0.005. The authors of [1] caution the reader that ‘this value is likely to
be an underestimate’. They suggest (without proof) thatd,. < 2. Here we analytically
re-examine these results in the light of recent developments in knot theory [17, 33].

As was shown by Arnold [34] and more recently in [17,33], the entanglement
complexity c[y] also has an analytic expression which is related to the expression for
the writhe (3.1). Indeed, following [17], we obtain

Iy] = / / dr’ [(7 (1) x (7)) - (r(z) — r(t’))l‘ (3.5)

lr(z) —r(x)3
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In general,

|Wrlyll # cly]. (3.6)

According to [35], the relation betweeWr and ¢ can be formulated in terms of the
Bennequin conjecture stated below. )fis constructed as the closure of a braid @n
strings, then

JAWrlyll —a+ 1D <ulyl < 3yl —a+ 1D (3.7)

whereu[y] is the unknotting number (i.e. the minimal number of self-crossings that will
turn the knot into an unknot). Unlik& r[y] and c[y], the unknotting number[y] is a
topological invariant [12, 36]. The minimum number of strings in any braid representation
for a given knot is defined as the braid indgk/] [37]. For the unknotd[y] = 1 and, in
general,

Bly] < s[D] —ind[D] (3.8)

where s[D] is the number of Seifert circles obtained from a given planar knot diagram
D for some knoty. These circles are obtained by splitting each crossing af such a
way that the resulting knot diagram becomes a set of closed non-intersecting (disconnected)
Jordan curves (Seifert circles). The index of the knot diagramZihdg defined in [37]. In
general, its definition is rather complicated. Therefore, we would like to quote the related
result which is more familiar to physicists. As a by-product, we shall obtain an inequality
similar to (3.7) which provides an additional support to the Bennequin conjecture.

Begin with a two-variable link (knot) polynomiaP, (v, z) for the oriented link (knot)
y. Following [38] we write

1
E o — UPy‘ = ZPyo (39)

wherey*, y~ andy? have link (knot) diagrams which differ by one crossing (figure 1).

Figure 1.

Using (3.9) andPynknot = 1, this ‘HOMFLY’ polynomial of any link (knot) can
be written as a polynomial iz or a Laurent polynomial inv. In the first case one
has P, (v,z) = Zf;g a,(2)v" with a.(z) # 0 # ag(z), while in the second one has
P,(v,2) = X" =M b, (v)z" With b, # 0% by. By definition [37], thev-span(P,) = E —e
andz-span(P,) = M —m. Using these definitions, it can be shown [37] that

3lv-spanP,)] < Bly] —1<n—1 (3.10)
whereS[y] has the same meaning as in (3.8). Moreover, according to [38], we also have
M < c[y] = (s[D] = D). (3.11)

In view of (3.8), we may write as well

(Bly] = ) +ind[D] < s[D] — 1. (3.12)
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By rewriting (3.11) as

[Pl -1 + M < c[y] (3.13)
and using (3.12) we arrive at the inequality

[Bly] = 1] +ind[D] + M < (s[D] = 1) + M < c[y]. (3.14)
This inequality allows us to write

ind[D] + M < c[y] — (Bly] - D). (3.15)
Comparison between this result and (3.7), assuminglhe{ M,

M < 5(cly] — (Bly] = D). (3.16)
Hence the Bennequin conjecture is related to the assertion

M >~ uly]. (3.17)

In general, M < u(y), as can be seen by inductive application of (3.9). There are examples
in which inequality is strict: it seems that equality holds in ‘most’ cases.

There is yet another numbé€[n] which is closely related ta[y] and c[y]. K(n)
is defined as the number diistinct knots which have plane projections with at mast
crossings. It was shown [5, 6] that for large

2" < K[n] 224" (3.18)
Following [17], we shall demonstrate thatdfy] is known, thenK[n] can be estimated.
It is also clear thakz, M and u[y] should (on average) depend & According to the

definition of ¢[y] which was provided after (3.3), for a given knot witfy] = n» we can
write inequality (3.18) as

2 < Kn] < 2- 2401, (3.19)

Fortunatelyc[y] can be estimated with the help of an auxiliary quantity, knot ‘energy’
E[y], defined according to [17] as

N/2 T+ ) 1 1
Ely] = dr fr_g dr { (1) —r @) - e } (3.20)

-N
2

where the arc-length parametrization is used (Iig§1 =1, see e.g. [15]) and is some
constant, 1< o < 3. It is shown in [17] that (forx = 2 only!)

[yl + ; < %E[y]. (3.21)

For largeN we expectc[y] also to be large, which allows us to ignore the facgom
(3.21) so that, on average, we can write

(€D < oo (EDD. (3.22)
JT

Although, in principle, it is possible to perform an average with the help of the path integral
defined in (2.8), for largev the polymer chain is expected to be very flexible [15, 25] so
that in the limit only (!) one can replace (2.8) by a simpler, Gaussian-like, path integral

defined by
N 2
(-4 :NG/ D[r(1)]. ..exp{ - E/ dr (dT> } (3.23)
F(O)=r(N) 2 Jo dr
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Such replacement is done mainly for technical (computational) reasons. Alternative, more
rigorous methods of averaging will be discussed in the next section.

The presence of the second term in the right-hand side of (3.20) removes the unphysical
short distance singularities arising from the removal of the cui-othdeed, forr — 7/,
following [23], we can write

2

"o dr . ldr 2
r(r)_r(r)+a(r—r)+é@(r—r)+--~. (3.24)

Using Serret—Frenet formulae in (3.24), we obtain after some algebra [23]
1
2

2
Ir(t) — (2| ~ s [1 - j_zkz(r):| (3.25)

wherek?(r) is the same as in (2.7) and= |z — ’|. For smalls use of expansion (3.25) in
(3.20) demonstrates that the expressionHpy] is manifestly non-singular (for & o < 3).

The energy functionak[y] for « = 2 has an additional useful property dldius invariance,
which makes the exponent = 2 somewhat special. To appreciate the significance of
this exponent, following [17], let us consider the energy of the unkgotlf we use the
arc-length parametrization of the circle of radiRs then the energy of a circlg, can be
calculated as

4 T+ 1 1
Ely] = RZ/ dr/ dr’ 5 — . (3.26)
- —t-m [ZR sinL;’"] [RIT —/[]*

For @ = 2, E[y] becomes independent of the radiRsand, hence, of the length of the
curve N. For any othewx we obtain, evidently,

E[yo] x R¥% o« N7, (3.27)

If we assume that the abovE€-dependence persists also for more complicated (knotted)
situations, then using (3.22) we obtain

(c[y]) < N*© (3.28)

which would requirex to be less than or equal to orie order to be in qualitative agreement
with the numerical results of [1]. This, however,rist permissibleaccording to [17] (since
the domain ofx lies between 1 and 3).

The resolution of this contradiction can be found if we analyse the averaged value of
E[y]. The averaged energy is defined by

Nd Nd 1
E = Y (N 3.29
(ELD /0 T/o ‘ <|r<r)—r(r/)|“> (3.29)

where equation (3.23) was used and we have disregarded the singular counter-term in (3.20)
since the averaged quantity happens to be non-singular (as is well known from similar
calculations, see e.g. [39, 40]).

To perform an average in (3.29), let us formally define the Fourier transform of the
potential|r|~* via

N 4 o0 4
v (k) = /dfr |r|~¢dFr = 7” f dr r1% sinkr = H—Zconstan(ra) (3.30)
0
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where constarii) = fo°° dx x1~* sinx. The constaritr) is well defined only for 1< o < 3
and this result is in complete agreement with [17] where the same bounds were obtained
using completely different arguments. Using (3.30) we can write as well

1 1 —ikr
Ve (r) = |'r|“ @/dke ve (k). (3.31)
By combining (3.29) and (3 31) we obtain
(EDD = s [ dlvatrso (3.32)

where S(k) is defined by

N N . ,
S(k) = / d‘[/ dr’ (e—'k'(r(f)—r(r ))>.
0 0

This quantity (up to numerical prefactor) is the static scattering form-factor for circular
Gaussian-like polymers. This quantity was calculated in [41] and it is for this reason that
we have used the averaging procedure specified by (3.23). The action in the exponent of
(3.23) isnot reparametrization-invariant while the energy, (3.26), is (foe 2). The lack

of reparametrization invariance for this and related action(s) and its consequences for the
calculation of physical observables was recently discussed in [23]. The experience with
flexible polymers suggests, nevertheless, that for lastgethe Gaussian approximation,
(3.23), is quite adequate (the excluded volume effects can be easily incorporated into (3.23)
if necessary (see section 4)). For largehe difference between the circular and the linear
polymers becomes unimportant when computitig), see e.g. [40]. This fact allows us to
write at once the result fo§(k):

1 1
S(k) = N? / dy / dy e s ', (3.33)
0 0
Combining this result with (3.32) we obtain

(E[y]) = (Zn)3(4n)zconstar\¢a)/ dk k%~ 1/ dyf dy’ e =y

= constari{a) N2z (3.34)
where constandw) is defined by the first line of (3.34) (with appropriately rescalgdThe
result (3.34) should be compared against (3.27) and against the numerical results of [1].
For o ~ 1 we have(E[y]) « N%2 while for « ~ 3 we obtain(E[y]) « Nz. While the
first value lies within the domain of expected valuesxpfsee e.g. (3.4)) in view of (3.22),
the second value is considerably lower. To sharpen our estimates, let us now take a closer
look at the value of constdiik) in (3.34). We have (upon proper rescaling)

oo 1 1
constaria) o 2/ dk k"“1/ dy/ dy’ e Kly=vl

/ dyf W/ dk k*te . (3.35)
ly =yl

The last integral is manifestly non-singular for<la < 2 which produces at once
CuN < (E[y]) < C,N®? (3.36)
in view of (3.34) whereC,,, C/, are constants depending an Using (3.22) we conclude as

well that the observed value of. (defined by equation (3.4)) lies within the range of the
above estimate. Moreover, becausés strictly larger than one we can finally write far.

1+8<a,<15-3 (3.37)
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with § — O*. The lower bound fow. is also in complete accord with an earlier independent
theoretical estimate presented in [36].

The above bounds are obtained without taking account of the excluded volume effects.
The experience with similar types of calculations [39] suggests that the upper bound in
(3.36) can be noticeably lowered, thus bringing our estimate (3.36) much closer to the
experimentally observed results [1]. We shall consider this subject in more detail in the
discussion section of our paper where we shall argue that both the upper bound 1.5 and the
lower bound 1 forx, have an additional physical meaning associated with packing capacity
for knots.

Being able to provide an estimate far[y]) we can now make an estimate f&r(n)
defined by (3.19). Foxx = 2 we obtain, using inequalities (3.19) and (3.21), corollary 3.5
of [17] and the results fotE[y]), the following estimate foK (n):

K (n) < (0.264)(1.648 ErD (3.38)

with (E[y]) given in (3.36). The averagiE[y]) is taken over all closed walks of length
N, while n = n(N) is the average crossing numbefy]).

In [17] the energy of an unknot was calculated. Using equation (3.26) (for2) and the
inequality (3.21), the authors of [17] obtained for the unknBfyy] = 67 +4 = 22.849 54.
In section 2 we made an estimate of the topological persistence length. The following
guestion arises: how is the above estimate (which involves explicitly the length of the
curve) related to the above energy estimate which is explicitly length-independent? To
reconcile these two seemingly conflicting results, let us use again the result (3.25) in (3.20).
We can formally write

N
Elyo] = /O de £ (1)

f(r) = /(;N dt’ { = - = } . (3.39)

[r(x) —r@)l*  |z—1|*
As in [23], let us consider the conformations which are close to the rigid rod limit (i.e.
k(t) — 0). Then, using (3.25) fofs| <« +/12/|k(t)| we obtain
2 a/2
m ~ sia <1+ izkz(r)) ~ sia + %SZ_“kz(r) T (3.40)
The first term in this expansion cancels with the second term in (3.39) while the second
term foro@ = 2 becomes-independent. In this limit we can safely write

where

N N
E[yo] ~ T / dr k?(t) ~ 22.84954 (3.41)
0
Using the results of section 2, see e.g. equation (2.14), we can rewrite (3.41) as

1 1
E[yo] = 1—2/0 dr k%(7) (3.42)

which indicates that forx = 2 the energy isV-independent (as required). When this result
is combined with the inequality (2.7) we obtain

(67 +4) = E[y] > 1</dr |k(1:)|2> > ’Lz (3.43)

Hence the energy value for the unknot is in complete agreement with earlier calculations
based on total curvature.
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4. Discussion

Although the existing knot polynomials [12, 13] provide us with valuable information about
knots, it seems to us that Milnor’s differential geometric approach [16, 42] (for more recent
results, see e.g. [43, 44]) is more convenient for polymer-related problems since it allows us
to think of knots (links) as being made of some material with elastic characteristics which
are physically measurable. This fact is especially important in biological applications where
these characteristics can be readily regulated [23, 45] e.g. by changing the ionic strength of
solution, etc.

It is our hope that the methods developed in this paper will help to stimulate more
detailed calculations in the future. Among the problems which require further study we
would like to mention the following. First, in section 2 we observed that the actual numerical
value ofl; sensitively depends upon the connection between the discrete and the continuum
formulations of the corresponding path integrals. Second, in section 3 we used the path
integrals which araifferent from that used in section 2. This was motivated by the known
difficulties in calculatingS(k) for Kratky—Porod (e.g. (2.8)) chains as discussed in [25]. For
long flexible chains the results fd¥(k) obtained with the use of simpler (Gaussian) path
integral measures (e.g. (3.23)) produce §gk) physically acceptable results [25]. Both
Kratky—Porod, (2.8) and Gaussian (Wiener), (3.28), path integralsaineparametrization-
invariant R-1 as was discussed in [23]. At the same time, the expression for the knot
energyis R-l, see e.g. (3.27) fo = 2. The averaging of the R-I quantity (such Bfy]
for « = 2) with the help of path integrals which are not R-1 is questionable in general
[23,46]. Nevertheless, it is common in the polymer literature where, for example, the R-I
nematic interaction terr_nﬁoN dr foN dt’ |% X %| is used in combination with the K—P action
(e.g. (2.8)) which imot R-I. This disrespect of R-I sometimes leads to erroneous physical
predictions (e.g. for polyelectrolytes) as discussed in [23, 45]. Since according to [17] (and
the analysis of section 3), any value @fbetween 1 and 3 is acceptable, the requirement
of R-I may not be very stringent. At the same time, since foritigdvidual torus knots
calculations were made with = 2 [47] so that the resulting energies are manifedily
independent, the issue of R-1 for knot-related problems requires much more study if path
integrals are used.

The reparametrization invariance cannot always be a guiding principle. Indeed, the knot
complexity which we calculated in section 3 malgg/sical sense only with respect to the
length of the polymer. This can be seen already in computatiohs dfor N < [ we still
anticipate crossings in knot-projections onto some chosen plane(s). The minimal number of
crossings to produce a non-trivial knot should be at least 3. Hencd forl; we expect
to have at least three crossings. This naturally reintroduces the lower cut-off into the knot
problem. On another hand, if we keep the number of crossinfised but letN — oo,
then the knot complexityc[y]) ~ n does not mean much becaus&V — 0. At the same
time, since(c[y]) grows faster than the length according to humerical experiments [1],
we formally obtain infinityN*~1 — oco. However, this infinity is not physically relevant.
Indeed, if we were to ignore for the moment the excluded volume effects, then we would
have to considetc[y]) crossings in the volum& ~ R3 o« N2, This would create a ratio
P = (c[y])/N®? (packing capacity of a knot) and, according to our estimate (3.37), this
ratio will go at mostto the constant. This would require us to have no more than about
one crossing per unit volume, which is physically sensible.

The excluded volume effects will create some obstacles to the knot formation leading
to reduced(c[y]). Because the volume exponemt will be larger thang while a, will
be smaller than 1.5 (see (4.3) below); this will produee— 0 for N — oo. SinceN is
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never infinite, the finite-size effects are always important (e.g. see the result (2.6) which
was obtained mainly because of the finite-size effects) and, hence represent real physical
interest.

This argument naturally provides an upper bounddar If, in addition, one considers
the collapsed state, where~ N3, then one arrives at the lower bouad > 1 by requiring
the ratio P to be a constant. A previously obtained estimate Kai) indicates that the
collapsed state for quasi-knots [4] should be glass-like vitte) being the number of
possible quasi-equilibrium states.

Third, in section 3 we noticed that the bounds (3.35) are obtained with disregard of the
excluded volume effects. Our experience with polymers [39] allows us easily to correct this
deficiency. Indeed, in the case of polymers, calculation of the diffusion coefficient for the
individual polymer chain (using Kirkwood approximation) involves averages like

kBT/ d‘l,'/ dr< 1 > 41
6, Ir(z) — ()] “-1)

see e.g. equation (4.1) of [39]. We have used in (4.1) the same averaging procedure
as in (3.23) (averages similar to (4.1) were considered much earlier by Feynman [40] in
connection with the polaron problem) and have introduced the temperature #g€t@nd

the viscosity of the solvent,. Upon calculation of the average in (4.1), we obtain the
Stokes-Einstein formula [48]

ksT

" 6,/ (RD)

where (R?) «c N as is always the case for Gaussian chains [49, 50].

In the light of the earlier introduced rati8, it is not totally unusual that the diffusion
coefficientD for polymers formally resembles that for hard spheres. At the same time, any
departure ofP from the constant value should immediately afféc11]. The ratioP is
ultimately responsible for the ‘porocity’ of the ‘hard’ sphere (D’arcy law). This observation
leads to separation of different knots with the help of chromatography or centrifugation. All
these observations, of course, require much more study.

The account of the excluded volume effects will formally prodyf¥) oc N2 with
2v ~ g as is well known [24]. Using this fact in (3.34), we would obtain instead

4.2)

(E[y]) x N>%" = N, (4.3)
For « close to 1 this would produce the exponent
a.=2—av<14 (4.4)

while for the upper permissible value ef= 2, the lower bound for the exponemt should
remain unchanged, i.ex. = 1, in view of (3.35). Hence, accounting for the excluded
volume effects brings our results much closer to the experimentally observed [1].

The above calculations were based on the inequality (3.21). In principle, there is a better
way to find knot-complexity. It is based on the use of manifestly reparametrization-invariant
path integrals with the actiofi given by

N N
S=mn /0 dr k()] + 72 /0 dr |T(0)] (4.5)

wherey; andy, are some constants whitér) andT (t) are, respectively, the local curvature
and the local torsion of the curve. For2l dimensions the path integrals of this sort were
recently considered in [51] while in [52] the more general case of the actiah-inl
dimensions was considered (but either with= 0 or y, = 0, etc) with results which are
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less detailed than in [51]. The above path integrals are also closely related to the strings
with rigidity [30] so that the detailed solutions of these integrals may shed some new light
both on knot and string theories.

Note added in proofAfter this work was completed we found reference [53] which relates our results to further
physical applications.
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